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Abstract 
 
Animals exhibit an extraordinary capability for precise and agile locomotion 

across a diverse array of natural terrains. Replicating this remarkable 

adaptability and efficiency in robotic systems, particularly quadrupedal robots, 

presents a formidable challenge that sits at the forefront of robotics research. The 

overarching objective of our study is to develop and refine a fast, efficient, and 

robust controller capable of guiding quadruped robots through a wide range of 

natural environments. These environments encompass a variety of challenging 

conditions, including uneven terrains, steep inclinations, slippery surfaces, and 

deformable substrates such as soft soil, loose gravel, sand, dust, water, and thick 

vegetation. To achieve this, our research delves into different simulation 

platforms to simulate the intricacies of realistic and complex deformable terrains 

that closely mimic the natural world. A significant part of our effort focuses on 

evaluating and implementing a Position-Based Dynamics (PBD) model within 

Isaac Sim, a cutting-edge simulation platform. This model offers a promising 

approach to accurately simulate the physical interactions between the 

quadruped robots and deformable terrain, offering insights into the mechanics 

of locomotion on such surfaces. Through the application of reinforcement 

learning (RL), we train a sophisticated controller capable to instill the quadruped 

with the ability to follow a unified policy across a spectrum of challenging 

conditions. We culminate with rigorous testing and optimization to validate the 

effectiveness of our developed control system, emphasizing its robustness and 

adaptability.



 

Zusammenfassung 
 
Tiere verfügen über eine außergewöhnliche Fähigkeit zur präzisen und 

wendigen Fortbewegung in einer Vielzahl von natürlichen Umgebungen. Diese 

bemerkenswerte Anpassungsfähigkeit und Effizienz in Robotersystemen, 

insbesondere in vierbeinigen Robotern, nachzubilden, stellt eine große 

Herausforderung dar, die an der Spitze der Robotikforschung steht. Das 

übergeordnete Ziel unserer Studie ist die Entwicklung und Verfeinerung eines 

schnellen, effizienten und robusten Controllers, der in der Lage ist, vierbeinige 

Roboter durch ein breites Spektrum an natürlichen Umgebungen zu führen. 

Diese Umgebungen umfassen eine Vielzahl anspruchsvoller Bedingungen, 

darunter unebenes Gelände, starke Steigungen, rutschige Oberflächen und 

verformbare Substrate wie weicher Boden, loser Kies, Sand, Staub, Wasser und 

dichte Vegetation. Um dies zu erreichen, befasst sich unsere Forschung mit 

verschiedenen Simulationsplattformen, um die Feinheiten realistischer und 

komplexer verformbarer Terrains zu simulieren, die der natürlichen Welt sehr 

nahe kommen. Ein wesentlicher Teil unserer Bemühungen konzentriert sich auf 

die Evaluierung und Implementierung eines PBD-Modells (Position-Based 

Dynamics) in Isaac Sim, einer hochmodernen Simulationsplattform. Dieses 

Modell bietet einen vielversprechenden Ansatz, um die physikalischen 

Interaktionen zwischen den vierbeinigen Robotern und dem deformierbaren 

Terrain genau zu simulieren und Einblicke in die Mechanik der Fortbewegung 

auf solchen Oberflächen zu geben. Durch die Anwendung von 

Verstärkungslernen (Reinforcement Learning, RL) trainieren wir einen 

hochentwickelten Controller, der dem Vierbeiner die Fähigkeit verleiht, eine 

einheitliche Strategie über ein Spektrum von schwierigen Bedingungen hinweg 

zu verfolgen. Wir schließen mit rigorosen Tests und Optimierungen ab, um die 

Effektivität des von uns entwickelten Steuerungssystems zu validieren und 

seine Robustheit und Anpassungsfähigkeit zu betonen. 
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Chapter 1 

Introduction 

1.1 Motivation 
The marvel of quadrupedal animals' locomotion - their agility, endurance, and 

speed - has long captivated human imagination. From the swift chase of a cheetah 

to the graceful leap of a deer, these natural athletes embody a level of physical 

prowess that has inspired scientists and engineers alike. In understanding the 

secrets behind the remarkable capabilities of these creatures, we not only unlock 

new avenues in biological sciences but also pave the way for revolutionary 

advancements in robotics. This project is motivated by the desire to bridge the gap 

between biological locomotion and robotic capability, particularly in the context of 

navigating complex, deformable terrains that pose a significant challenge for 

current robotic systems. 

 

   

Figure 1.1: The Unitree A1 robot on various terrains: (a) successful traversal on sand, (b) 
failure on gravel, and (c) failure on a gravel-sand mixture. 

 
Our motivation is further reinforced by preliminary experiments conducted with 

the Unitree A1 robot, as depicted in Fig 1.1. These trials highlighted the robot's 

difficulties in traversing terrains composed of gravel and sand, underscoring the 

need for enhanced locomotion strategies.  

(a) (b) (c) 
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1.2 Objectives and Overview 
 

This thesis endeavors to address the significant challenges faced by quadruped 

robots when traversing on deformable terrains such as sand, gravel, and mud. 

These challenges stem from the unpredictable and highly variable nature of 

deformable terrains, which can dramatically affect the stability, mobility, and 

energy efficiency of robotic locomotion. The objectives of this research are to: 

• To identify and understand the challenges quadrupeds face when 

transitioning from rigid to deformable terrains. This involves analyzing the impact 

of terrain deformability on locomotion dynamics, control complexity, and energy 

utilization. 

• To create a detailed simulation environment that can accurately model the 

interaction between the quadruped robots and a variety of deformable terrains. 

This includes integrating advanced physical modeling techniques to simulate the 

complex behaviors of granular materials. 

• To develop adaptable and robust control strategies that must account for the 

unpredictability of substrate responses and aim to maintain stability and traction in 

the face of shifting and sinking surfaces. 

• To assess the performance of these control strategies in simulated 

environments to varying terrain conditions. 
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1.3 Contribution 
The primary contribution of this thesis lies in the successful implementation of a 

practical and effective simulation environment utilizing Position-Based Dynamics 

(PBD) within Isaac Sim. This environment was specifically tailored for the 

development and evaluation of RL algorithms aimed at optimizing quadrupedal 

locomotion on deformable terrains. The adoption of PBD allowed for a more 

accurate and computationally efficient simulation of granular interactions, 

facilitating the real-time training, and testing of RL policies. Our investigation 

spans various simulation software like Isaac Gym, Isaac Sim and NVIDIA Warp 

and methodologies including Position-Based Dynamics (PBD), Discrete Element 

Method (DEM), and Finite Element Method (FEM), to model the intricate 

interactions between robots and granular materials like sand and gravel. These 

exploratory phases were crucial for understanding the limitations and advantages 

of different simulation environments in capturing the complex dynamics of 

deformable terrains. 

In addition to the development of the simulation environment, we designed a 

comprehensive RL framework that employs accurate input representations and 

policy architectures, utilizes terrain generation and domain randomization 

techniques to expose the learning algorithms to a wide range of environmental 

conditions. It integrates a tailored reward structure that encourages stable and 

adaptable locomotion strategies suitable for navigating both rigid and deformable 

terrains. 

By blending advanced simulation techniques with cutting-edge learning 

algorithms, this thesis aims to lay the groundwork for future advancements in 

robotic locomotion, enabling robots to go where no robot has gone before. 
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Chapter 2 

Background 

2.1 Quadruped Robot Locomotion – Overview 
 
The quest to emulate the locomotion of quadruped animals has been a significant 

area of research in robotics. Quadruped robot locomotion draws inspiration from 

the natural world, where animals exhibit a remarkable range of movements to 

navigate diverse and challenging terrains. The study of legged locomotion 

dynamics has been pivotal in understanding the mechanical principles governing 

movement and stability.  

Traditional methods for navigating rough terrain with legged robots often involve 

complex and intricate control systems[1], [2], [3], [4], [5]. These methods generally 

use detailed state machines to manage various movements and reactions, relying 

on specific estimates like when a foot makes contact with the ground or slips[6], [7]. 

However, these estimates can be unreliable when dealing with unpredictable 

elements like mud or snow[8], [9], [10]. Some designs also use sensors on the 

robot's feet for direct contact detection, but these too can fail in challenging outdoor 

conditions. As a result, these traditional approaches become increasingly complex 

and hard to manage, especially as they try to accommodate more varied scenarios, 

making them difficult to develop and maintain while also being prone to failure in 

unexpected situations. 

Also, a significant portion of Earth's terrestrial environment comprises these non-

rigid terrains, presenting a compelling argument for the necessity of adaptable 

locomotion strategies in legged robots. Recent advancements have led to the 

development of more versatile quadruped robots capable of traversing a wide 

range of terrains[11], [12], [13], [14], from rigid surfaces to challenging, deformable 
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terrains like mud and snow[11], [15]. The inherent advantages of legged over 

wheeled mobility, particularly in handling sinkage and slippage[16], have been 

demonstrated through advancements in robotic design, enabling traversal across a 

broader spectrum of terrains. However, the challenge of accurately predicting 

terrain dynamics[17], [18] due to varying compliance and deformability has limited 

extensive application outside controlled laboratory settings[19], [20]. These studies 

lay the foundation for developing control algorithms that can mimic the efficiency 

and adaptability observed in natural locomotion. However, the dynamic 

interaction with non-rigid surfaces remains a complex challenge, as traditional 

control strategies primarily designed for rigid terrains often fail when confronted 

with the unpredictable nature of deformable terrains. Consequently, modern 

research efforts to incorporate terrain models into legged robotic control have 

largely focused on robots with basic morphology, such as the one-dimensional (1D) 

hopper[19], [21], [22], due to the complexity of more intricate designs. 

2.2 Reinforcement Learning for Locomotion 
 
Deep Reinforcement Learning (DRL) has emerged as a powerful tool for 

automating the learning process of complex locomotion tasks[23], [24], [25]. This 

approach has streamlined controller design, automated design processes, and 

enabled the learning of previously un-engineered behaviors[23], [24], [25], [26]. By 

interacting with a simulated environment, an RL agent iteratively improves its 

policy, aiming to maximize a cumulative reward signal. Recent advancements in 

DRL enable robots to learn effective locomotion strategies through trial and error, 

progressively optimizing their behavior based on experience. 

The application of RL in quadruped locomotion has seen substantial interest due to 

its potential to discover efficient and novel movement strategies without explicit 

programming. Previous works[11], [12], [13], [15], [23], [24], [27], [28] demonstrate 

that RL can enable robots to learn locomotion skills that are robust across a variety 

of surfaces, including those not encountered during training. Agarwal et al.[29] 

have explored how egocentric vision can inform foot placement and terrain 
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interaction. These studies underscore the value of RL in automating the design of 

complex locomotive behaviors that would be challenging to craft manually.  

The control strategies for such robots have evolved from simple, statically stable 

walking patterns to dynamic, agile maneuvers that leverage the robot's natural 

dynamics. Researchers like Hutter et al. and Lee et al. [11], [15], [23], [30] have 

showcased quadruped robots traversing steep slopes and rugged terrains, 

highlighting the importance of sophisticated control algorithms that can adapt to 

changing environmental conditions. Curriculum learning[31], [32], [33], [34] 

simplifies training by starting with simple tasks and gradually increasing 

complexity, a technique previously utilized in robotic systems training. Control 

strategies for enabling terrain adaptation in legged robots have evolved from rigid 

models to more flexible, learning-based approaches.  

A significant challenge in applying RL to legged locomotion is bridging the gap 

between simulation and reality, as discrepancies between simulated and real-world 

conditions can lead to degraded performance outside the laboratory[23], [24], [25]. 

Strategies such as dynamics randomization[35] and domain adaptation[28], [36] in 

the form of privileged learning frameworks[37] have been explored to enhance the 

transferability of learned policies. Privileged Learning involves training a "teacher" 

policy with access to simulation-only states, from which a "student" policy learns to 

mimic the teacher’s performance without requiring such privileged information. 

Domain Randomization extends the diversity of training scenarios, enhancing the 

robot's ability to adapt to new and varied real-world environments.  

 

2.3 Simulation Environment 
 

A crucial factor for successful DRL application in this domain is the availability 
of high-fidelity simulators. Simulations play a pivotal role in the development and 
testing of locomotion strategies, offering a safe and controllable environment for 
iterative experimentation. Over the years, a myriad of simulation tools has been 
developed, each with its own set of features, physics engines, and levels of 
realism. 
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Leading simulators like MuJoCo[38] (Multi-Joint dynamics with Contact) and 
Gazebo have been widely used in the robotics community for their robust physics 
simulation capabilities and flexibility in designing complex environments. 
MuJoCo, known for its speed and accuracy in simulating the dynamics of multi-
jointed robots with contact dynamics, has been instrumental in advancing 
research in legged locomotion and manipulation. PyBullet[39], an open-source 
robotics simulator which has gained popularity for its ease of use and integration 
with Python, provides realistic physics simulation and graphical visualization. 
These tools have been particularly useful for researchers focusing on complex 
manipulation tasks and locomotion challenges in dynamic environments.  

More recently, NVIDIA’s Isaac Gym[40] has emerged as a powerful tool for 
training robotic systems using DRL. It leverages GPU acceleration to simulate 
thousands of environments in parallel, dramatically speeding up the training 
process of DRL algorithms. This capability allows for the exploration of vast 
parameter spaces and the training of more sophisticated policies that can 
generalize across a wider range of scenarios. Isaac Gym’s integration with 
NVIDIA’s PhysX engine ensures high-fidelity physical simulations, crucial for 
tasks requiring precise interaction with the environment. 

Accurate simulation of deformable terrains poses significant computational 
challenges, with granular media (GM) simulation being a key area of focus. 
Despite advancements, the simulation of deformable terrains poses a substantial 
challenge, given the complexity and variability of real-world surfaces. Several 
challenges lie at the forefront of this research domain. One is the high 
computational cost associated with realistic deformable terrain simulation. 
Another is the development of techniques for effective terrain characterization – 
enabling the robot to quickly identify properties of the ground it's traversing (e.g., 
softness, slipperiness) and adapt its locomotion accordingly. Additionally, 
ensuring safe training and deployment of RL-based controllers is critical, as these 
algorithms may explore unsafe actions during their learning process.  

Kolvenbach et al.'s work[16] on navigating steep and granular Martian analog 
slopes with a dynamic quadrupedal robot marks a significant milestone in the 
field, demonstrating the potential of advanced simulation tools to prepare robots 
for extraterrestrial exploration. The discrete element method[41], [42] (DEM), has 
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been identified as a promising approach for modeling the interactions between 
robotic limbs and granular media, offering insights into the mechanics of 
locomotion on soft grounds. However, the computational intensity of DEM limits 
its applicability in real-time or large-scale simulations, necessitating the 
exploration of more efficient simulation methodologies for RL-based training. To 
address this gap, we chose NVIDIA's Isaac Sim for its support of Position-Based 
Dynamics[43], [44] (PBD), which provides a viable platform for simulating 
complex interactions with deformable terrains within a RL framework. By 
leveraging Isaac Sim’s PBD capabilities, our thesis aims to create a simulation 
environment that closely mimics the challenges of navigating deformable terrains, 
providing a valuable platform for developing and testing the control policies of 
quadruped robots. This endeavor not only advances our understanding of robot-
environment interactions but also moves us closer to realizing the deployment of 
autonomous quadrupeds in real-world applications ranging from search and 
rescue missions to planetary exploration. 
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Chapter 3 

Methods 

This chapter delineates the comprehensive methodology employed in developing 

and training a RL policy for a quadruped robot navigating deformable terrain. The 

approach begins with training in Phase 1 on rigid terrains, utilizing modifications 

from a benchmark model. Building upon the foundational skills acquired, the 

training progresses to Phase 2, where the robots are exposed to dynamic, particle-

enriched terrains. This section details the objectives, strategies, and outcomes 

associated with each phase. 

 
3.1 Quadruped Dynamics 
 

The notion of this section is to elucidate the mathematical foundation underlying 

quadrupedal dynamics, focusing on their representation through generalized coordinates 

and the application of Euler-Lagrange equations in describing system behaviors. 

 

To encapsulate the motion of quadruped robots, especially when dealing with floating base 

systems, we employ generalized coordinates. This approach facilitates a comprehensive 

representation of the system's kinematics and dynamics. The generalized coordinate vector 

q is partitioned into two segments: qb and qj, representing the unactuated floating base 

coordinates and the actuated joint coordinates, respectively. Formally, q is defined as: 

𝑞𝑞 = �𝑞𝑞𝑏𝑏      𝑞𝑞𝑗𝑗� 
Where qb=[x, y, z, φ, Θ, ψ]T delineates the position and orientation of the robot's center of 

mass (CoM) with respect to the inertial frame, employing Euler angles (roll ϕ, pitch Θ, and 

yaw ψ) for base orientation representation.  
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The equations of motion for the quadruped system are derived from the Euler-Lagrange 

equation, incorporating the effects of contact forces. It can be expressed as: 

𝑀𝑀(𝑞𝑞)𝑞̈𝑞 + 𝐶𝐶(𝑞𝑞, 𝑞̇𝑞) + 𝐺𝐺(𝑞𝑞) = 𝑆𝑆𝑇𝑇𝜏𝜏 + 𝐽𝐽𝑐𝑐(𝑞𝑞)𝑇𝑇𝐹𝐹𝑐𝑐 

 
where M(q) is the inertia matrix, 𝐶𝐶(𝑞𝑞, 𝑞̇𝑞) represents Coriolis and centrifugal forces, 𝐺𝐺(𝑞𝑞) is 

the gravitational force vector, Fc denotes the vector of contact forces, Jc (q) is the contact 

Jacobian, and S is a selection matrix isolating actuated joints. The system's dynamics hinge 

on these variables, alongside the gravitational, Coriolis, and contact forces. 

 

The contact forces, crucial for interaction with the environment, are calculated as follows: 

𝐹𝐹𝑐𝑐 = (𝐽𝐽𝑐𝑐𝑀𝑀−1𝐽𝐽𝑐𝑐𝑇𝑇)−1�𝐽𝐽𝑐𝑐𝑀𝑀−1(𝐶𝐶 + 𝐺𝐺 − 𝑆𝑆𝑇𝑇𝜏𝜏) − 𝐽𝐽𝑐𝑐𝑞̇̇𝑞� 

 
This formulation facilitates the estimation of contact forces without direct force 

measurement, leveraging system dynamics. 

 
3.2 Reinforcement Learning Framework 

 

Reinforcement Learning (RL) is a machine learning paradigm that enables an agent 

to learn optimal behaviors through interaction with an environment. As shown in 

Fig.3.1, the process hinges on the agent's ability to evaluate its actions based on 

feedback, encapsulated as rewards or penalties, thus guiding it towards optimal 

behavior. 

 

The mathematical foundation of RL is the Markov Decision Process (MDP), 

characterized by a continuous state space S, a continuous action space A, a state 

transition function T(s,a,s'), and a reward function R(s,a). Here, T(s,a,s') denotes the 

probability density of transitioning to the next state s' upon taking an action a in 

the current state s, while R(s,a) specifies the immediate reward for taking action a 

in state s. 
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Figure 3.1: Diagram illustrating the cyclical process of reinforcement learning process, 
including agent, environment, actions, rewards, and policy. 
 

A policy Π(a ∣ s) is a strategic plan that maps states to actions. The objective in RL is 

to discover a policy that maximizes the expected return, defined as the sum of 

discounted rewards over a horizon T, mathematically expressed as:  

𝐽𝐽(π) = 𝐸𝐸 ��γ𝑡𝑡𝑅𝑅(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)
𝑇𝑇

𝑡𝑡=0

� 

 
where 𝛾𝛾 ∈ [0,1] is the discount factor moderating the importance of future rewards. 

 
3.2.1 Proximal Policy Optimization 

 
Proximal Policy Optimization (PPO) represents a class of policy gradient 

algorithms that iteratively improve the policy by estimating the gradient of the 

expected return with respect to the policy parameters. PPO is distinguished by its 

use of a clipped surrogate objective function to mitigate excessively large policy 

updates. The modified objective incorporates clipped probability ratios, forming a 

conservative estimate of the policy's advantage: 

𝐿𝐿(θ) = 𝐸𝐸𝑡𝑡� �min�𝑟𝑟𝑡𝑡(θ)𝐴𝐴𝑡𝑡�,clip(𝑟𝑟𝑡𝑡(θ), 1 − ϵ, 1 + ϵ)𝐴𝐴𝑡𝑡��� 
 

where ϵ is a hyperparameter dictating the clipping range, 𝑟𝑟𝑡𝑡(θ) =
πθ𝑜𝑜𝑜𝑜𝑜𝑜�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡�
πθ�𝑎𝑎𝑡𝑡�𝑠𝑠𝑡𝑡�
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represents the probability ratio reflecting the disparity between the current and 

preceding policy, and 𝐴𝐴𝑡𝑡� is an estimator of the advantage function at time t. This 

formulation encourages moderate adjustments to the policy, fostering stable and 

effective learning. 

 

3.2.2 Input Representation 
 

The RL model relies on a rich set of inputs to accurately predict the optimal actions for the 

quadruped robot. Collectively, these components of the input representation form a 

comprehensive state space that captures both the internal state of the robot and its 

interaction with the environment. This rich input enables the RL policy to make nuanced 

decisions that optimize the robot's locomotion in diverse and challenging terrains. 

Base Linear Velocities: This component of the state space represents the velocity of the 

robot's base in three dimensions: forward/backward, left/right, and up/down. 

Base Angular Velocities: These velocities indicate the rate of rotation of the robot's base 

around three perpendicular axes: roll, pitch, and yaw.  

Measurement of the Gravity Vector: The gravity vector measurements in the robot's body 

frame provide information about the orientation of the robot relative to the gravitational 

force. This helps in distinguishing between the robot's inclination and the slope of the 

terrain it traverses, aiding in stability and posture adjustment strategies. 

Command Vector: The command vector includes desired directions or velocities that the 

robot should follow, usually provided by a higher-level controller. It represents a target 

velocity in the forward direction x, lateral movement y, and a rotational velocity around the 

vertical z axis(yaw), guiding the RL policy towards achieving specific locomotion objectives. 

Joint Position: This refers to the current angular positions of each of the robot's twelve joints 

(assuming three joints per leg for a quadruped) 

Joint Velocity: Joint velocities provide the rate of change of the angular positions of the 

robot's joints. 

Previous Actions:  Including the history of previous actions allows the policy to incorporate 

temporal dependencies into its decision-making process. It helps in smoothing the control 

commands over time and avoiding abrupt changes that could destabilize the robot or result 



22  

in inefficient movements. 

Measurements of the Terrain Sampled from a Grid Around the Robot’s Base: This aspect 

of the input representation consists of a set of distance measurements from the terrain 

surface to the robot's base, sampled from a grid surrounding the robot. These 

measurements provide detailed information about the terrain's geometry near the robot, 

enabling the policy to adapt the robot's movements to various terrain features. 

 

3.2.3 Action Space 
The action space in RL defines the set of all possible actions that the learning agent 

can take in response to the current state. For our quadruped robot with three joints 

per leg, the action space consists of twelve values of desired joint position targets 

for each of the robot's twelve joints, which the robot's control system strives to 

achieve. These targets are not absolute joint angles but are intended to be offsets 

from a nominal or 'default' joint configuration, which represents the robot's 

standard posture for efficient movement. The desired joint position targets are then 

scaled and applied within the robot's control loop to determine the actual motor 

commands issued to the joints.  

The control loop employs a Proportional-Derivative (PD) controller, where the 

proportional term (denoted by Kp) ensures that the motor command is proportional 

to the difference between the current joint position and the desired target position, 

accounting for a scaling factor. The derivative term (denoted by Kd) counters the 

joint velocity, effectively damping the motion and preventing oscillations that 

could lead to instability. The resulting torques are clipped to a maximum and 

minimum value of 80.0 Nm for Anymal Robot, preventing the application of 

excessive torques that could damage the robot's actuators or cause unstable 

behavior. 
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3.2.4 Policy Architecture 
The policy architecture encapsulates the computational framework and design of 

the neural network used by the agent to learn and make decisions. For the RL agent 

used in this study, the A2C (Advantage Actor-Critic) algorithm was implemented 

with continuous action spaces. The architecture is designed to separate the policy 

(actor) and value (critic) functions, each parameterized by a neural network that 

learns to predict the most beneficial actions and estimate future rewards, 

respectively. For the action space configuration, the architecture specifies a 

continuous output with no activation function applied to the mean and standard 

deviation. The standard deviation is initialized to zero and fixed, implying a 

deterministic policy at initialization which evolves during training. 

The network is structured as a Multi-Layer Perceptron with three hidden layers 

containing 512, 256, and 128 units respectively. The activation function for all layers 

is the Exponential Linear Unit (ELU), chosen for its ability to handle the vanishing 

gradient problem. 

 

3.2.5  Training Configuration 
The agent is trained utilizing a Proximal Policy Optimization (PPO) approach. 

Input normalization is applied across observations, values, and advantages to 

stabilize training, which is a common practice to aid in the learning process. Other 

significant hyperparameters include: 

Discount factor: for future rewards, set to 0.99, which balances the immediate and 

future reward trade-off. 

Smoothing coefficient: for the advantage calculation, set to 0.95. 

Entropy Coefficient: a small value of 0.001, which encourages exploration by 

penalizing certainty in action selection. 

Learning Rate: An adaptive learning rate beginning at 3.e-4, with adjustments 

based on the Kullback-Leibler (KL)-divergence threshold of 0.008. 
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Gradient Clipping: The model applies gradient clipping with a norm threshold of 

1 to prevent the exploding gradient problem. 

Minibatch and Epoch Configuration: The model uses large minibatches of size 

16384, over a horizon length of 24 steps, each minibatch is processed for 5 mini-

epochs, with a batch size ≈  50,000. 

Max Epochs and Evaluation: The learning process is set to a maximum of 2000 

epochs, with a performance evaluation criterion (score to win) of 20000. 

Hardware Utilization: The experiment is configured to run on specified devices 

(cpu, gpu), ensuring optimal hardware utilization for training efficiency. For rigid 

terrains, leveraging the GPU pipeline is recommended for its performance benefits. 

However, due to the current limitations in Isaac Sim's support for particle 

simulation views on the GPU pipeline, it is necessary to switch to the CPU pipeline 

during phase 2 involving particles. This transition ensures that the particles behave 

as expected within the physics scene, moving, and interacting in response to the 

robot's actions. 

3.2.6 Rewards 

The reward function is the guiding force in RL, providing a measure of success for 

the agent's actions at every time step. The benchmark model's reward function, 

derived from the foundational paper, consists of a weighted sum of multiple terms, 

each reflecting a different aspect of the desired behavior: 

Linear and Angular Velocity Tracking: 

• Linear Velocity Tracking: The robot is rewarded for the accuracy with 

which it matches the target base velocities in the horizontal xy-plane.  

• Angular Velocity Tracking: Similarly, the robot is rewarded for tracking 

the target angular velocity around the z-axis, incentivizing the agent to maintain 

a desired rotational motion. 

Penalties for Undesired Velocities and Joint Dynamics: 
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To discourage undesired behaviors, penalties are included in the reward function: 

• Linear Velocity Penalty: To penalize any undesired base velocity along the 

vertical (z) axis to discourage jumping or sinking motions. 

• Angular Velocity Penalty: Penalize any undesired base angular velocities 

in the horizontal plane (x,y) to maintain directional stability 

• Joint Motion: Encouraging smooth and controlled joint movements, 

penalties are assigned for excessive joint accelerations and velocities. 

• Joint Torques: To promote energy efficiency and prevent mechanical stress, 

the reward function penalizes large joint torques. 

• Action Rate: The policy is penalized for abrupt changes in the desired joint 

positions, fostering smooth transitions between actions. 

To ensure safe interaction with the environment and promote agility: 

• Collisions: A negative reward is given for each collision, urging the agent 

to avoid unsafe contact with obstacles. 

• Feet Airtime: Longer steps are generally more visually appealing and 

potentially more effective. The reward function thus includes a term that rewards 

the agent when the feet are in the air, past a certain threshold duration. 

Weights and Time Scaling: Each of these reward and penalty terms is scaled by a 

predefined weight and multiplied by the physics scene time step dt, which 

normalizes them to maintain consistency across different simulation step sizes.  

Reward Terms Definition Weight 

Linear Velocity Tracking ∅�𝑣𝑣𝑏𝑏,𝑥𝑥𝑥𝑥
∗ − 𝑣𝑣𝑏𝑏,𝑥𝑥𝑥𝑥� 1 dt 

Angular velocity 

Tracking 

∅�𝜔𝜔𝑏𝑏,𝑥𝑥𝑥𝑥
∗ − 𝜔𝜔𝑏𝑏,𝑥𝑥𝑥𝑥� 0.5 dt 

Linear Velocity penalty −𝑣𝑣𝑏𝑏,𝑧𝑧
2  4 dt 

Angular velocity Penalty −�𝜔𝜔𝑏𝑏,𝑥𝑥𝑥𝑥�
2 0.05 dt 
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Joint motion −�𝑞̈𝑞𝑗𝑗�
2 − �𝑞̇𝑞𝑗𝑗�

2 0.001 dt 

Joint torques −�𝜏𝜏𝑗𝑗�
2 0.00002 dt 

Action rate −�𝑞𝑞𝑗𝑗∗�
2 0.25 dt 

Collisions −𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 0.001 dt 

Feet airtime 
��𝑡𝑡air,𝑓𝑓 − 0.5�
4

𝑓𝑓=0

 
2 dt 

Table 3.1: Definition of reward terms, for benchmark model with ϕ(𝑥𝑥) ≔ exp(−4. |𝑥𝑥|2) 

Adaptations for Phase 1 and 2 Training 

Transitioning to Phase 1 and 2 of our training, which focuses on navigating 

granular terrains, required us to revisit and adapt the reward function to better suit 

the challenges inherent to these environments. We identified the necessity to refine 

the reward function by the addition of two reward terms to the stumble and feet 

contact forces, alongside the decision to exclude the airtime reward under certain 

training conditions.  

1. Stumble Prevention Reward: Navigating granular terrains, such as sand or 

gravel, presents unique challenges for quadruped robots, including the risk of 

stumbling due to uneven or shifting surfaces. To address this, we incorporated a 

stumble prevention reward[45], which penalizes the robot for instances where the 

lateral forces on its feet exceed a predefined stumbling threshold force, without 

sufficient vertical force to counterbalance. The stumble condition is true when the 

norm of lateral forces on the robot's feet surpasses the stumbling threshold, and 

the vertical forces are below the vertical force threshold.  

2. Peak Contact Forces Reward: Another aspect critical to terrain navigation 

is managing the forces exerted by and on the robot's feet upon contact with the 

ground. In our case, contact force exceeding 500 N could indicate harsh or 

unstable landings, potentially leading to slippage or damage and thus we 

introduced a reward term[46] that penalizes excessive contact force. 
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3. Exclusion of Airtime Reward: In the benchmarked model, the airtime  

reward was employed to encourage longer, visually appealing strides. However, 

this reward term was observed to lower the base height of the robot, inadvertently 

increasing the risk of failure upon contact with granular terrain due to insufficient 

clearance. Consequently, to adapt to the specific challenges posed by granular 

terrain, the airtime reward was removed from the reward function for Phase 1 and 

2 of our training. This decision was supported by the rationale that in granular 

terrain, maintaining stability and controlled contact with the ground takes 

precedence over the aesthetic or potential efficiency gains attributed to increased 

airtime. 

Reward Terms Definition Weight 

Linear Velocity Tracking ∅�𝑣𝑣𝑏𝑏,𝑥𝑥𝑥𝑥
∗ − 𝑣𝑣𝑏𝑏,𝑥𝑥𝑥𝑥� 1 dt 

Angular velocity 

Tracking 

∅�𝜔𝜔𝑏𝑏,𝑥𝑥𝑥𝑥
∗ − 𝜔𝜔𝑏𝑏,𝑥𝑥𝑥𝑥� 0.5 dt 

Linear Velocity penalty −𝑣𝑣𝑏𝑏,𝑧𝑧
2  4 dt 

Angular velocity Penalty −�𝜔𝜔𝑏𝑏,𝑥𝑥𝑥𝑥�
2 0.05 dt 

Joint motion −�𝑞̈𝑞𝑗𝑗�
2 − �𝑞̇𝑞𝑗𝑗�

2 0.001 dt 

Joint torques −�𝜏𝜏𝑗𝑗�
2 0.00002 dt 

Action rate −�𝑞𝑞𝑗𝑗∗�
2 0.25 dt 

Collisions −𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 0.001 dt 

Stumble ��|𝑓𝑓𝑥𝑥𝑥𝑥| > 5� ∧ (|𝑓𝑓𝑧𝑧| < 1) 0.5 dt 

 

Feet Contact Force ���|𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥| − 500�
+
� 0.01 dt 

Table 3.2: Definition of reward terms, for Phase 1 model with ϕ(𝑥𝑥) ≔ exp(−4. |𝑥𝑥|2) 
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3.3 Terrain Generation 
The development of robust locomotion policies for robots requires training within 

diverse and challenging environments. To facilitate this, a procedural terrain 

generation system coupled with an automated curriculum is employed. The terrain 

generation framework is designed to create a variety of terrains with adjustable 

complexity levels. These terrains serve as the training grounds for agents, where 

they are exposed to different conditions and challenges, simulating real-world 

scenarios. 

3.3.1 Phase 1 Terrain Generation 

In Phase 1, the curriculum and terrain generation were configured to offer a broad 

spectrum of environmental challenges across a wide array of terrains. This phase 

was characterized by a large number of 20 terrain columns and 10 levels in each 

terrain, creating a vast and diverse training landscape. A diverse set of terrain 

types, including smooth slope, rough slope, stairs up, stairs down, and discrete 

obstacles as shown in Fig 3.2. This diversity was aimed at developing versatile 

navigation strategies across different topographies. A larger map size (map Length: 

8. and map Width: 8.), providing ample space for complex terrain configurations 

and navigation tasks.  

     

Figure 3.2: Terrain types used for training[34]: (a1) Randomly rough terrain with 
variations of 0.1 m. (a2) Sloped terrain with an inclination of 25 deg. (a3) Stairs with a 
width of 0.3 m and height of 0.2 m. (a4) Randomized, discrete obstacles with heights of up 
to ±0.2 m. (b) Parallel AnymalC robots progressing through various terrains with 
automatic curriculum. 
  

(a1) (a2) 

(a3) (a4) 

(b) 
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3.3.2 Phase 2 Terrain Generation 

The primary goal of Phase 2 is to train quadruped robots to adeptly traverse 

granular terrain, with a specific focus on gravel. This objective is underpinned by 

the realization that navigation through granular media presents unique challenges, 

including variable resistance and shifting footholds, which are not typically 

encountered on more stable, rigid terrains. To achieve this goal, we introduce 

Central Depression Terrain, a flat terrain with central indented region of 4*4 size 

which is specifically designed to hold particles, simulating the granular texture and 

behavior of gravel. This terrain serves as the training environment for the robots to 

adapt their locomotion strategies to the unstable and unpredictable nature of 

granular media. 

To facilitate this specialized training, the map size (mapLength: 6. and mapWidth: 

6.) and the number of terrains (numTerrains: 3) and levels (numLevels: 3) are 

strategically reduced as shown in Fig 3.3. This adjustment is made to match the 

maximum number of particles that the training environment can realistically 

accommodate, ensuring an optimal and focused training setup for granular terrain 

navigation. The reduction in environmental complexity allows for a concentrated 

effort on mastering traversal over granular media, within the computational and 

physical constraints of the simulation environment. 

 

Figure 3.3: A depiction of the simplified training environment used for Phase 2 training on 
granular terrain. The environment is configured with a map size of 6x6 units and with the 
central depression terrain filled with particles visualized by blue color, also featuring three 
distinct terrains and levels to optimize particle count within computational limits. 
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3.4 Terrain Curriculum Design 

One aspect of our training methodology is the incorporation of an automatic 

curriculum, inspired by game design principles. This curriculum progressively 

increases the difficulty of the terrain as agents improve their locomotion 

capabilities. The curriculum is structured around the concept of levels, where each 

level represents a terrain with a specific set of challenges. Agents start training on 

less challenging terrains, and as they demonstrate proficiency by traversing these 

terrains successfully, they are promoted to higher levels with more complex 

terrains. The curriculum adapts to the performance of each agent individually, 

ensuring that the difficulty level of the terrain is always matched to the agent's 

current capabilities. 

3.4.1 Curriculum Dynamics 

Difficulty Gradation: Terrains are categorized into different levels of difficulty, 

with parameters such as slope inclination, step height, and obstacle complexity 

gradually increasing. 

Performance Feedback: The curriculum continuously evaluates the performance of 

robots based on the distance moved by an agent relative to its target velocity and 

dynamically adjusts the difficulty levels of terrains. Robots that successfully 

traverse challenging terrains progress to more difficult levels, while those 

struggling may regress to simpler terrains for reinforcement learning. 

Termination Condition: The termination condition for training the robot is 

triggered when a timeout occurs after reaching the maximum episode length or if 

the robot falls, indicated by excessive contact forces on the base or knees.  

Looping Mechanism: To prevent stagnation and encourage exploration, robots 

reaching the highest difficulty level are looped back to intermediate levels, 

promoting diversity and continuous improvement. 
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3.4.2 Phase 2 Curriculum Progression 

The curriculum is meticulously structured to expose robots to an ascending level of 

terrain difficulty. Initially, robots encounter flat terrain, providing a baseline 

navigational challenge. Subsequently, they are introduced to three different types 

of rigid terrains in each column. The rigid terrains introduced at the second level of 

the curriculum are configured to present the maximum difficulty. This deliberate 

choice ensures that the robots are adequately challenged to apply and extend their 

previously acquired knowledge and skills from Phase 1, reinforcing their 

capabilities. 

Finally, the curriculum culminates with the granular terrain, representing the peak 

challenge of Phase 2 challenging the robots to apply and adapt their learned skills 

to navigate effectively through the unstable and unpredictable gravel terrain. 

 

3.5 Adapting Terrain Sampling in Particle-Filled 
Environments 

In simulations involving rigid terrains, the height samples crucial for informing the 

robot's neural network are directly sampled from the ground terrain mesh. This 

method ensures that the robot receives accurate representations of the terrain it 

navigates. However, the introduction of terrains filled with particles in a central 

depression complicates this process. The distribution of particles on top of terrain 

can lead to incorrect inputs if sampled directly from the terrain mesh, potentially 

impairing the robot's ability to learn effective locomotion strategies. 

Simplified Approach for Particle Terrain Sampling: Initially, methods were 

considered for extracting detailed particle information, filtering out particles to 

identify the top layer, and averaging these data points to construct an accurate 

representation of the terrain height. While theoretically sound, these approaches 

significantly increase the complexity and computational demands of the 

simulation, which can hinder real-time simulation performance for effective robot 

training. Also, even with advanced filtering and averaging techniques, the 



32  

variability in particle distribution can lead to artifacts and inconsistencies in the 

height data fed into the network, potentially impairing the robot's learning process. 

To address this challenge, we adopted a simplified method that involves adjusting 

the sampled height values in depression gap to match the height level filled with 

particles.  

Monitoring and Maintaining Particle Density: An additional layer of complexity 

is introduced by the dynamic nature of particle simulations, where the number of 

particles within a designated area can fluctuate due to the robot's interactions with 

the terrain. To ensure consistency in the terrain representation, we implemented a 

function to check the particle density within the depressions at intervals of 15 

seconds. If the number of particles falls below 80 percent of the initial value, 

indicating a significant dispersion of particles, we reset the particles to their initial 

state. This process also involves identifying robots within the affected grid and 

resetting them to avoid collision while resetting. 

 
3.6 Sim-to-Real Transfer Additions 

To address these challenges and facilitate a more seamless sim-to-real transfer, 

several specific measures are implemented: 

• Friction Coefficient Randomization: Each robot's interaction with the 

ground is subject to variability, with friction coefficients sampled uniformly from 

the range [0.5,1.25]. This randomization introduces variability in traction, 

simulating a wider array of real-world surfaces and conditions the robots might 

encounter, from slippery floors to rough terrains. 

• Observation Noise Incorporation: Real-world sensor data invariably 

includes noise, which can significantly affect a robot's ability to perceive its 

environment accurately. To acclimate the robots to these conditions, noise is 

added to the observations within the simulation, based on actual measurements 

from real robots. This practice ensures that the trained policies are not overly 

reliant on pristine, noise-free data and can maintain their performance in the 

presence of sensor inaccuracies. 
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Joint Positions ±0.01 𝑟𝑟𝑟𝑟𝑟𝑟 

Joint velocities ±1.5 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 

Base linear velocity ±0.01 𝑚𝑚/𝑠𝑠 

Base angular velocity ±0.2 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 

Projected gravity ±0.05 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠2 

Measured terrain heights ±0.01 𝑚𝑚 

Table 3.3: For every element within the observations, a noise value is drawn from a 
uniform distribution of the specified scale and then added to the corresponding 
observation component to introduce variability. 

• Random External Pushes: To further prepare the robots for unexpected 

disturbances, they are subjected to random pushes during training episodes. 

These disturbances occur every 10 seconds, with the robots' bases being 

accelerated up to ±1 m/s in both the x and y directions. This intervention teaches 

the robots to maintain or quickly regain stability, a critical skill for real-world 

deployment where unexpected interactions with the environment or with 

humans can occur. 

• Dynamic Particle Parameter Randomization: In addition, our simulation 

includes environments with dynamically adjustable gravel particle 

parameters during Phase 2 training. We dynamically randomize several PBD 

parameters from Table 3.4 around selected nominal values every 20 seconds 

which includes the density, friction, adhesion, and particle friction scale of the 

granular particles.  

Density [2500, 3500] 

Friction [0.3,0.4] 

Particle Friction Scale [0.75, 1.25] 

Adhesion [0.0001, 0.0003] 
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Particle Adhesion Scale [1, 5] 

Table 3.4: The Ranges for dynamic randomization of particle parameters in simulation 
environments. These parameters are adjusted every 20 seconds during Phase 2 training to 
enhance the quadruped's adaptability to varying granular terrain properties. 

 
3.7 Warp: A Differentiable Physics Simulator 

We started with an initial attempt to model deformable interactions using 

traditional Finite Element Method (FEM) technique within NVIDIA's Isaac Sim, 

which resulted in suboptimal and unnatural behaviors in the quadruped 

simulation. The outcomes may diverge significantly from real-world scenarios as 

they do not adequately reflect the hydrodynamic-like properties of granular media.  

 

Figure 3.4: Simulation demonstrating the results of an attempt to apply deformable body 
simulation[47] using Finite Element Method (FEM) approaches within NVIDIA's PhysX 
and Isaac Sim. The depicted quadruped robot exhibits instability, characterized by 
excessive jittering of the mesh object, persistent sliding, and unnatural jumping behavior 
despite parameter adjustments, leading to non-realistic motion patterns. 

In the progression of this study, the Warp framework emerged as an initial tool of 

interest for simulating complex physical interactions within the Isaac Sim 

environment. Warp's proficiency in handling differentiable physics made it a 

suitable candidate for exploring deformable terrain dynamics. However, the 

study's focus transitioned from Warp to a PBD approach as the research unfolded. 

This chapter delves into the initial forays with Warp, articulating the reasons for its 
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selection and the subsequent pivot to PBD within Isaac Sim. It discusses the 

challenges encountered with Warp simulations, such as scalability and the 

integration complexity within the Universal Scene Description (USD)-centric 

environment of Isaac Sim. The limitations that led to the discontinuation of Warp in 

favor of a PBD-based methodology are analyzed, providing insights into the 

decision-making process behind simulation framework selection.  

3.7.1 Synergy Between Warp and Isaac Sim 
Warp[48] is a Python framework designed for high-performance GPU simulations 

in real time applications, particularly for scenarios where differentiable physics is 

required in robotics, game development, and virtual reality. While Warp is not a 

replacement for fully featured physics engines like Isaac Sim or PhysX, it is 

designed to complement existing physics engines by focusing on scenarios that 

benefit from differentiable physics. Its capability to handle complex physical 

interactions, especially with deformable objects and terrains, positions Warp as a 

valuable tool for simulations requiring gradient-based optimization. 

The integration of Warp's deformable terrain simulation capabilities within the 

Isaac Sim environment offers a powerful platform for this study. The Universal 

Scene Description (USD) framework serves as a bridge between Warp and Isaac 

Sim, enabling the incorporation of Warp-generated deformable terrains into the 

Isaac Sim environment. By exporting Warp-simulated terrains as USD files, we 

create portable and interoperable scene representations that can be readily 

imported into Isaac Sim. After simulating a particle grid in Warp, the scene is 

exported as a USD file. This file encapsulates the geometric and dynamic properties 

of the terrain, including its deformability attributes. Within Isaac Sim, the USD file 

is imported to create a new scene or augment an existing simulation framework. 

Then, we establish a communication channel with the help of Action Graphs to 

allow the Isaac Sim environment to interact dynamically with the imported particle 

objects. 
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Figure 3.5: Interaction of the collider mesh within the DEM particle implementation in 
Warp, showing the effects of mesh collision with the granular material. 

 

Our approach was inspired by NVIDIA's showcase of Discrete Element Method 

(DEM) example scenes within Isaac Sim. By studying these examples, we gained 

insights into the effective simulation of complex physical interactions between 

robots and their environments. Starting from these foundational examples, we 

expanded our framework to include Warp-generated deformable terrains, further 

enhancing the realism and challenge of our training scenarios. 

 

3.7.2 Action Graph Integration 
Action graphs in Isaac Sim provide a robust mechanism for orchestrating complex 

simulations, enabling the control and coordination of various simulation elements, 

including those imported from Warp. Omnigraph is a graph-based programming 

framework used within Isaac Sim. It provides the infrastructure for the creation 

and management of complex simulations through a network of interconnected 

nodes. This system enables the integration of disparate simulation components and 

the management of complex data flow within the simulation environment. Several 

nodes come to play to enable this interaction. 

The "OgnParticlesFromMesh" node is designed to generate particles within a 3D 

mesh within the Omnigraph framework. It takes the input mesh and transforms its 

point positions into world space. It then uses a custom kernel function to fill a 

volume defined by the mesh with particles. This kernel evaluates each point within 

a grid overlaid on the mesh, determining if the point falls within a specified range 
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from the mesh surface. Points that meet the criteria are jittered randomly to prevent 

uniformity and then stored as particle positions. Once the valid particle positions 

are identified, the node initializes particle properties such as velocity, mass, and 

radius based on the input parameters that are uniformly set across all particles. The 

node packages the resulting set of particles into a bundle that can be used by the 

next node. 

 

Figure 3.6: An action graph visualizing the data flow and processing sequence for particle 
simulation, highlighting nodes for reading, simulating, inspecting, and writing primitives. 

OgnParticlesSimulateNode's primary function is to simulate particle dynamics 

within Isaac Sim. It interacts with other components, such as rigid body colliders 

managed by PhysX, handles the transformation of particle positions to and from 

world space, enabling the simulation to reflect changes in the environment 

accurately and updates particle velocities based on collisions and interactions, 

providing a realistic simulation of particle movement and behavior. 

Upon receiving input from a particle simulation node, the 

"OgnBundleInspectChanges" node monitors these particle attributes for changes. It 

utilizes the Omniverse Graph change tracking system to record which attributes 

have been altered since the last evaluation. This is achieved through a comparison 

of the current state of attributes against their previous state. Once changes are 

detected and recorded, the node outputs a bundle that reflects the current state of 
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the simulation entities, along with a string of changed attribute names and a flag 

indicating whether topology changes occurred. It then  activates the execution for 

downstream node, called "Write Prims" node, enabling them to reflect the changes 

made to the particles in the simulation environment. 

 

3.7.3 Particle Dynamics 
Particle-Particle Dynamics: 

In the simulation, each particle is subject to forces arising from contact with other 

particles. The force acting on a particle 𝑖𝑖 due to another particle 𝑗𝑗 is given by the 

sum of the normal force and the frictional force. The normal force (𝐹𝐹𝑛𝑛) is computed 

based on the contact stiffness (𝑘𝑘𝑛𝑛) and damping (𝑘𝑘𝑑𝑑), while the frictional force (𝐹𝐹𝑡𝑡) 

is calculated using a friction coefficient ( μ) and the frictional stiffness (𝑘𝑘𝑓𝑓). 

The normal force is given by: 

Fn  =   − kn.  c  −  min(vn,  0) .  kd 

where 𝑐𝑐  is the penetration depth between the two particles and 𝑣𝑣𝑛𝑛 is the relative 

normal velocity.  

The frictional force is governed by Coulomb's friction law: 

𝐹𝐹𝑡𝑡 = −min�𝑘𝑘𝑓𝑓𝑣𝑣𝑠𝑠, μ|𝐹𝐹𝑛𝑛|� 

where 𝑣𝑣𝑠𝑠 is the magnitude of the relative tangential velocity. The direction of the 

frictional force is opposite to the relative tangential velocity. 

The total force (𝐹𝐹) acting on the particle is the combination of the normal and 

frictional forces: 

𝐹𝐹 = 𝐹𝐹𝑛𝑛𝑛𝑛 + 𝐹𝐹𝑡𝑡𝑡𝑡 

where 𝑛𝑛 is the normal vector and 𝑡𝑡 is the tangential vector at the point of contact. 

Particle-Collider Dynamics: 

The interaction between a particle and a collider is modeled by calculating the 
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forces due to contact, damping, and friction. The contact force 𝑓𝑓𝑛𝑛 is the elastic 

response due to the compression 𝑐𝑐 between the particle and the collider, and is 

calculated as: 

𝑓𝑓𝑛𝑛 = 𝑛𝑛 ⋅ 𝑐𝑐 ⋅ 𝑘𝑘𝑒𝑒 

where 𝑛𝑛 is the contact normal, 𝑐𝑐 is the penetration depth, and 𝑘𝑘𝑒𝑒 is the combined 

stiffness constant derived from both the particle and the collider material 

properties. 

The damping force 𝑓𝑓𝑑𝑑 counteracts the relative normal velocity 𝑣𝑣𝑛𝑛 at the point of 

contact, and is given by: 

𝑓𝑓𝑑𝑑 = 𝑛𝑛 ⋅ min(𝑣𝑣𝑛𝑛, 0) ⋅ 𝑘𝑘𝑑𝑑 

where 𝑘𝑘𝑑𝑑 is the combined damping constant. 

The friction force 𝑓𝑓𝑡𝑡 opposes the relative tangential motion. Assuming Coulomb 

friction and a smooth friction model for stability around |𝒗𝒗𝒕𝒕| = 0,  the friction force 

is: 

𝑓𝑓𝑡𝑡 =
𝑣𝑣𝑡𝑡

|𝑣𝑣𝑡𝑡|
⋅ min�𝑘𝑘𝑓𝑓|𝑣𝑣𝑡𝑡|, |μ𝑐𝑐𝑘𝑘𝑒𝑒|� 

where 𝑣𝑣𝑡𝑡 is the tangential component of the relative velocity, 𝑘𝑘𝑓𝑓 is the combined 

friction coefficient, and μ is the combined dynamic friction coefficient. 

The total force 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 applied to the particle is the sum of the contact, damping, and 

friction forces: 

𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑓𝑓𝑛𝑛 + 𝑓𝑓𝑑𝑑 + 𝑓𝑓𝑡𝑡 

The torque 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 exerted on the collider due to the force at the point of contact is 

given by: 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑟𝑟 × 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

where 𝑟𝑟 is the vector from the collider's center of mass to the point of contact. 
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3.7.4 Integration Hurdles 
Staging Together: 

Warp and PhysX operate with distinct APIs and data models. While Warp provides 

a powerful set of tools for particle simulation, direct code-level integration with 

Isaac Sim can pose significant challenges due to the differences in the data models, 

the need for synchronization of state across various systems, and the complexities 

involved in managing dependencies and interactions.  

Universal Scene Description (USD) emerges as a solution to these challenges by 

providing a coherent and consistent way to represent the state of the simulation 

across all components. The USD format, being a comprehensive scene description 

framework, allows for the encapsulation of a wide variety of scene data including 

geometry, shaders, and rigging, as well as dynamic simulation states. It serves as 

an intermediary layer between Warp, PhysX, and other components within Isaac 

Sim. With USD, simulations can scale more efficiently by leveraging its capabilities 

for referencing and instancing. Within the action graph, dedicated nodes are used 

to read from and write to the USD stage, enabling the interaction of Warp particle 

dynamics with the PhysX-based physical world. By staging particle dynamics 

through USD, the action graph facilitates a smooth data flow between Warp and 

PhysX. Actions can be defined to trigger updates in the particle system based on 

physical events or changes in the environment, and vice versa. 

Model Scale and Parameter Normalization: 

A challenge encountered in the integration of Warp particle dynamics with PhysX 

in Isaac Sim revolved around the issue of model scale and selection of appropriate 

simulation parameters. Specifically, existing Warp particle scene was scaled at 100 

times larger than typical setups which lead to discrepancies in integration, making 

realistic simulations hard to achieve. Most particle parameters were declared 

dimensionless, hence, all parameters of the simulation, including particle sizes, 

distances, and physical force, were carefully tuned to easily map to corresponding 

simulation entities, ensuring that all components adhered to the adjusted scale. 
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The transformation of the coordinate system to align Warp's Y-axis up 

configuration with the standard Z-axis up orientation in Isaac Sim ensured 

consistent orientation across simulations. 

Multiple Collider Handling: 

The original OgnParticlesSimulateNode was designed to handle a single collider, 

which limited its applicability for complex models such as quadrupeds. The first 

step was to adapt the node's internal data structures to accommodate multiple 

colliders. This involved redefining the data structure to hold an array of collider 

entities instead of a single entity. Each entity in this array represents a separate 

collider mesh, allowing for individual configuration and update routines. 

Extending the collider handling system to manage multiple colliders enabled the 

assignment of individual colliders to each leg of a quadruped model.  

Ground Terrain Integration: 

In the development of our simulation framework, we encountered the limitation of 

Warp's default ground collider, which was represented as a flat plane. This 

simplistic representation was insufficient for simulating the complex interactions 

between particles and varied terrain surfaces, which are crucial for accurate 

environmental simulations. To address this, we modified the 

OgnParticlesSimulateNode to integrate a terrain mesh as a collider, thereby 

replacing the default flat ground collider. Warp's default flat ground collider was 

disabled, ensuring that the simulation engine does not automatically generate the 

flat ground collider at runtime. To ensure efficient collision detection with the 

complex terrain mesh, spatial indexing structures, such as bounding volume 

hierarchies (BVH), were employed. These structures significantly improve the 

performance of collision detection algorithms by reducing the number of collision 

checks required. 
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Figure 3.7: Integration of a quadruped robot with a discrete element method (DEM) 
particle system USD file from Warp in Isaac Sim, noting the slower performance due to the 
complexity of the simulation. 

 

3.7.5 Persisting Challenges 
Mesh Dynamics and Sphere Primitives 

Warp operates by creating high-fidelity simulations of physical interactions, 

offering the mesh class to manage triangle mesh data. When integrating Warp with 

Isaac Sim, collider meshes from Isaac Sim are input into Warp, where an instance of 

the mesh is created within Warp's model builder. This process involves translating 

mesh data—points, indices, and velocities—into Warp's format and utilizing this 

data to simulate forces, collisions, and other physical interactions. The Mesh.refit() 

function plays a crucial role in ensuring the mesh accurately reflects dynamic 

changes, such as deformations or displacements, by rebuilding the bounding 

volume hierarchy (BVH) structure. However, this integration revealed limitations 

when dealing with simpler geometric representations, such as sphere primitives. 

Sphere primitives, defined by a center point and radius, offer efficient collision 

detection in many physics engines by simplifying calculations to radius 

comparisons. Unfortunately, Warp does not support the option to refit sphere 

primitives, rendering this efficient collision model incompatible with dynamic 
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simulations in Warp. 

Computational Efficiency 

While Warp is designed for high-speed physics simulations, creating instances of 

collider meshes within its environment proved slow and inefficient for our 

purposes. The need to create instances within Warp's environment for each collider 

mesh and subsequently refit the BVH structure for dynamic updates significantly 

hampers the simulation's performance. This inefficiency stems primarily from the 

need to instantiate complex mesh data within Warp, separate from Isaac Sim's 

native handling of physics through PhysX. 

Challenges with Excluding Interactions 

A significant challenge arose from the necessity to exclude collisions between the 

quadruped's body and the ground within the Warp simulation, alongside 

excluding particle-body interactions in the PhysX environment of Isaac Sim. This 

exclusion was required to avoid redundant or conflicting collision processing 

between the two systems. However, it introduced substantial complexity in 

ensuring accurate and realistic simulation outcomes, particularly in scenarios 

where the dynamic feedback between the robot and the deformable terrain was 

critical for training fidelity. 

One-Directional Interaction Limitations 

Our simulation framework was initially designed with colliders treated as 

kinematic entities—meaning they could influence particles yet remained unaffected 

by them. This design simplifies collision detection and response calculations but 

fails to capture the reciprocal nature of physical interactions, such as the impact 

forces particles exert on colliders. Real-world scenarios involve bidirectional 

dynamics, where particles not only respond to colliders but also influence their 

state, a critical aspect in simulations aiming for high fidelity and realism.  

To enable Bidirectional Interactions, we aimed an approach to extract the calculated 

body force vector on collider from particles within Warp. This vector was intended 

to aggregate the influence of all interacting particles on a given collider, thereby 
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enabling the simulation to reflect the cumulative effect of particle impacts on the 

collider's state. The calculated force vector would then be applied externally to the 

PhysX solver, allowing for the dynamic adjustment of collider properties in 

response to particle interactions. 

However, inbuilt support within Isaac Sim's action graphs for managing external 

force applications from one simulation solver (Warp) to another (PhysX) was 

absent. In response, we contemplated developing a custom node designed to 

bridge this gap by facilitating the application of Warp-calculated forces onto PhysX 

colliders. However, the integration complexities between two distinct solvers 

quickly became apparent. The lack of direct access and control over PhysX's 

internal mechanics, combined with the anticipated synchronization and state 

management issues, presented formidable obstacles. 

Anticipated Integration Problems 

Given the distinct computational models and data structures employed by Warp 

and PhysX, seamless integration was fraught with challenges. Synchronizing the 

state between solvers, ensuring consistent and accurate force applications, and 

managing the computational overhead of such interactions were among the 

anticipated problems. These challenges highlighted the significant integration 

efforts required to achieve bidirectional interactions, efforts that could potentially 

outweigh the benefits in our specific simulation context. 

 

3.7.6 Discussion 
The pursuit of bidirectional interactions between particles and colliders revealed 

critical limitations in our simulation framework's architecture and underscored the 

complexities of integrating disparate solvers. Despite the conceptual appeal of 

reflecting the reciprocal dynamics between particles and colliders, practical 

implementation hurdles—stemming from a lack of inbuilt support, access 

restrictions, and anticipated integration challenges—led to the decision against 

pursuing this feature further within the scope of our project. This experience, 
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however, has provided valuable insights into the intricacies of simulation 

framework design and the importance of solver compatibility for future 

enhancements. 

Given these challenges—specifically, the limitations in refitting simple primitives, 

computational inefficiencies, and difficulties in achieving accurate two-way 

interactions—we opted to pivot towards leveraging Isaac Sim's embedded PBD 

particle dynamics for simulating deformable terrains, eliminating the need for 

complex integrations between different systems. 

 

3.8 Position-Based Dynamics in Isaac Sim 
Although models with NVIDIA's Warp were extensively explored, Position-Based 

Dynamics (PBD) was ultimately chosen for our simulations in Isaac Sim due to its 

efficiency in real-time applications. PBD is a physics simulation technique for 

simulating complex interactions between particles in real-time applications. Unlike 

traditional rigid body dynamics, PBD operates on the principle of position-based 

constraints, allowing for more flexible and efficient simulations of deformable 

bodies, fluids, and granular materials. By leveraging the NVIDIA Omniverse's 

physX engine, Isaac Sim efficiently computes the interactions between millions of 

particles, making it possible to simulate complex terrains and interactions that RL 

quadrupeds can train on. 

 

3.8.1 Theoretical Framework of PBD 

The core of PBD lies in its iterative solver that enforces constraints to model 

physical behaviors. The basic equation governing PBD is derived from the 

principle of position correction based on constraints. For a particle i, the position 𝒑𝒑𝑖𝑖 

is updated based on a constraint function 𝐶𝐶(𝒑𝒑1,𝒑𝒑2, … ,𝒑𝒑𝑛𝑛) = 0, which describes the 

physical condition to be met. The constraints can represent anything from particle 

incompressibility, frictional contact, to cohesion and adhesion effects between 

particles. The position update equation can be formulated as: 
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𝒑𝒑𝒊𝒊′ = 𝒑𝒑𝒊𝒊 + Δ𝒑𝒑𝒊𝒊 

where 𝛥𝛥𝒑𝒑𝑖𝑖 is the position correction calculated to satisfy the constraint C. The 

correction 𝛥𝛥𝒑𝒑𝑖𝑖 is computed as: 

Δ𝒑𝒑𝒊𝒊 = −𝜆𝜆∇𝒑𝒑𝒊𝒊𝐶𝐶(𝒑𝒑𝟏𝟏,𝒑𝒑𝟐𝟐, … ,𝒑𝒑𝒏𝒏) 

with λ being a Lagrange multiplier determined by the constraint's compliance and 

𝛻𝛻𝒑𝒑𝑖𝑖𝐶𝐶 representing the gradient of the constraint with respect to particle i's position. 

Advantages:  While DEM is another popular method for simulating granular 

materials, it differs from PBD in its approach to force computation and integration. 

DEM calculates forces based on collisions and contacts between discrete elements 

and integrates Newton's equations of motion to determine particle trajectories. This 

method is highly accurate for simulating granular flow and force transmission but 

can be computationally intensive, especially for large numbers of particles. 

PBD, on the other hand, offers a more efficient alternative for real-time applications 

by directly manipulating particle positions to satisfy constraints, thereby avoiding 

the direct computation of forces. This efficiency makes PBD particularly appealing 

for training RL quadrupeds in simulated environments, where computational 

resources are a limiting factor. 

 

3.8.2 Creating Particle Systems 

The first step in simulating granular terrain involves creating a particle system 

within the stage of Isaac Sim. A physics scene is defined with gravity set to Earth's 

standard gravitational acceleration (9.81 m/s²), which sets the foundational physics 

parameters for the particle simulation. Subsequently, a particle system is created 

and configured with specific properties such as rest offset, contact offset, and 

maximum velocity, which dictate the behavior and interaction of particles within 

the system. 
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Key configurations for the particle system include: 

Solid Rest Offset: Determines the size of solid particles or the proximity at which 

two solid particles are in contact. Two solid particles are touching when their 

centers are two times Solid Rest Offset apart. 

Particle Contact Offset: Defines the neighborhood radius for each particle. 

Particles within twice this offset from one another are considered neighbors, 

affecting constraint evaluations during simulations. 

Contact Offset (Particle-Non-Particle Interaction): This parameter specifies how 

close a particle must be to a collider before contact constraints are generated and 

processed by the solver. 

Rest Offset (Particle-Non-Particle Interaction): Represents the effective contact 

distance from a collider's surface for both solid particles and non-particle objects. 

Collision Offset: A buffer distance from a collider's surface where contact begins to 

be generated, particularly useful for preventing fast-moving objects from tunneling 

through colliders. 

MaxNeighborhood: Caps the number of neighbors a particle can have, with the 

default setting being 96. This parameter is vital for managing the computational 

load during constraint evaluations. Set to 200. 

Max Velocity: Dictates the upper limit on the speed at which particles within the 

simulation can move, which is set as 100. 

Time Step: Our initial configuration used a time step of 200, providing us with 

satisfactory results for our baseline simulations. However, in pursuit of enhanced 

simulation performance, modifications to the time stepping for specific elements 

within the simulation were considered, particularly for the particle system. The 

idea was to reduce the particle system's time step, effectively halving it in an 

alternative physics scene, to achieve faster simulation of the particles without 

compromising performance. While Isaac Sim supports the creation of multiple 

physics scenes with varying time steps for rigid bodies, enabling a hierarchical 
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priority system for dynamics calculations and collision handling, it does not extend 

this functionality to particle systems. Consequently, our efforts to employ a 

separate time stepping for particles were impeded by the current capabilities of 

Isaac Sim.  

It is generally understood that maximizing the simulation time step is crucial for 

achieving maximum throughput. Policy steps, conducted at 50 Hz in our case, 

necessitate several actuator and simulator steps to ensure stability. These 

additional computation steps are inversely proportional to the overall efficiency of 

the simulation; thus, reducing them is of utmost importance. It has been 

documented that reducing the time step below 0.005 seconds (corresponds to four 

simulation steps per policy step) is not viable, as it leads to instability in the 

actuator network designed to mimic a discrete-time PD-controller. This instability 

is not a limitation of the simulation's physics engine but a consequence of the 

actuator network's design constraints. 

Unlike the aforementioned systems, our quadruped simulation utilizes a 

straightforward PD controller rather than a separate actuator network for joint 

control. This allows for a more direct and less computationally intensive approach. 

With the intention of scaling the overall physics step time from 0.005 s to 0.01 s, we 

aimed to halve the computational load. Unfortunately, this adjustment did not 

yield a stable gait within the robot, indicating that other parameters tied to the 

simulation's stability might require recalibration. Notably, rewards are normalized 

by the time step, and changes to the step size could disrupt this balance. 

Additionally, the calculation of contact forces, which involves multiplying the 

impulse by the time step, could also be adversely affected by these changes. 

Due to these complexities and the instability observed during preliminary testing, 

we ultimately decided to maintain a time step of 0.005 s for our physics scene.  

 
Particle Instancing for Granular Terrain 

With the particle system and material configured, we proceed to create particle 

instancers. These instancers are responsible for defining the spatial distribution of 
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particles, effectively shaping the simulated granular terrain. Initially, our strategy 

involved creation of particles by instancing them from a predefined cube mesh 

based on the mesh's volume and shape.  

However, transitioning to a headless training environment, where graphical 

interfaces are disabled to optimize computational resources for simulation and 

learning tasks, resulted in errors. So, we opted for manually initializing particle 

positions and velocities for each particle within the simulation environment. The 

dimensions of the particle grid are carefully chosen to match the pit in the central 

depression terrain, such as the depth and width of a central depression. To fully 

accommodate the depth of the depression and avoid any voids that could 

undermine the realism of the simulation, the height of the grid is increased to allow 

particles to be realistically filled and compacted. 

Jitter: The spacing between particles within the grid is chosen to be 2.5 times the 

radius of the particles. To prevent the uniformity inherent in a grid arrangement 

and to introduce a degree of randomness that mimics natural terrain more closely, 

a jitter factor of 20% to particle spacing is applied to the positions of particles.  

Visualization and Material Binding: A visual representation with blue color is 

assigned to the particles, and physical materials are bound to the particle system to 

render the simulated terrain visually and interactively plausible. 

3.8.3 Particle Material Configuration 

Dimensionless Parameters: One of the challenges encountered during the 

simulation of granular materials in Isaac Sim was the dimensionless nature of 

many parameters within the PBD framework. Unlike traditional simulation 

parameters that are directly tied to physical quantities (e.g., mass in kilograms, 

velocity in meters per second), PBD parameters in Isaac Sim, such as particle 

friction scale and adhesion offset scale, do not have direct real-world counterparts. 

This discrepancy introduces complexity in calibrating the simulation to closely 

mimic the behavior of real granular materials like gravel. 
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Figure 3.8(a): Initial state of a column drop test showcasing a cylindrical stack of particles 
(b) Resultant dispersion of particles following the column drop test, illustrating the spread 
upon impact. 

Column Drop (Angle of Repose) Test: To address this challenge and ensure the 

simulation parameters reflect real-world granular behavior as accurately as 

possible, we employed empirical testing, specifically the static angle of repose test. 

The angle of repose is the steepest angle at which a pile of unconsolidated granular 

material remains stable without any particles sliding down. This angle provides 

critical insights into the frictional properties and collective behavior of granular 

materials. 

Based on the insights gained from the angle of repose tests, we selected the 

following parameters for the PBD particles in Isaac Sim: 

Friction: Set to 1, providing a middle-ground friction value that approximates the 

natural resistance of granular materials against sliding over each other. 

Particle Friction Scale: Kept at 0.3 to not alter the base friction significantly, 

ensuring the simulation mirrors the natural frictional behavior observed in the 

angle of repose tests. 

Damping: Set to 10 to prevent excessive particle dispersion upon contact. 

Adhesion: Minimally set to 0.0001, with an offset scale of 0.009. 

Particle adhesion scale: Set to 1.0. Despite varying the particle adhesion scale 

values across a wide range, from minimal to extreme values, there was no 

discernible difference in how the particles adhered to form lumps or exhibited 

increased cohesion. Ideally, adjusting these parameters should have resulted in 

(a) (b) 
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particles displaying a tendency to stick together. However, such behavior was not 

observed. 

Gravity Scale: Maintained at 1.0 to simulate the Earth's gravity. 

Density: Set to 2500 kg/m³, aligning with the density of gravel. 

3.9 Simulation Environment 
Our project embarked on a mission to replicate and extend the findings of the 

groundbreaking paper, "Learning to Walk in Minutes Using Massively Parallel 

Deep Reinforcement Learning[34]," which leveraged the power of GPUs for 

efficient quadruped locomotion training. The initial benchmarking efforts were 

guided by parameters and models detailed in the paper, with the original codebase 

hosted on GitHub by leggedrobotics/RSL under "legged_gym" within the Isaac 

Gym framework. 

3.9.1 Choosing Isaac Sim over Isaac Gym 

Despite Isaac Gym's capabilities and the option to use PhysX for physics 

simulations, several key factors motivated our transition to Isaac Sim: 

• Graphical User Interface (GUI): Isaac Sim provides a GUI that significantly 

aids in testing and visualizing particle dynamics, a feature absent in Isaac 

Gym. The GUI allows for intuitive interaction and visual feedback with the 

simulation environment, enabling rapid prototyping and debugging.  

• Particle Dynamics and Integration: No prior model or framework within 

Isaac Gym explicitly demonstrated the integration or manipulation of 

particles at the code level. Isaac Sim, conversely, offered built-in demo scenes 

support for simulating complex particle dynamics, a feature that was not 

readily accessible or well-documented in Isaac Gym's existing frameworks. 

• Availability of compatible foundational codebase: We utilized the code from 

OmniIsaacGymEnvs[49] provided by Nvidia Omniverse, which contained a 

crude implementation of the model akin to that used in the legged_gym. This 

repository provided a foundational base tailored for Isaac Sim. 
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3.9.2 Implementation Differences 

Transitioning to Isaac Sim also highlighted the differences in code implementations 

between the two environments. One of the notable difference was the approach to 

the Proximal Policy Optimization (PPO) algorithm. The legged_gym[50] codebase 

for Isaac Gym utilized a custom implementation designed for parallelized training 

of quadruped locomotion. In contrast, OmniIsaacGymEnvs for Isaac Sim leveraged 

RLGames, a versatile framework, necessitating adaptations. 

Incorporation of Missing Reward Terms: The initial codebase lacked airtime 

reward and collision avoidance reward terms. Integrating these rewards was 

essential to align with the benchmarks established in the literature.  

Incorporating these rewards requires accurate measurement of foot and knee 

contact forces. The RigidPrimView class is designed to create a focused view of 

specific rigid prims (primitive objects). Hence, to collect the forces, addition of a 

RigidPrimView specifically targeting the robot's shank and knee components was 

required.  

Implementation of a Velocity Curriculum: A direct replication of the model and 

parameters did not initially yield the expected learning reward curves. It was 

found that the robots struggled to get to the next levels in learning. To address this, 

a simple velocity curriculum was introduced, starting the quadrupeds at lower 

velocities, and gradually increasing the command range as their performance 

improved. 

Specifically, if the average reward associated with a motion command (e.g., linear 

velocity in the x and y directions, angular velocity around the z-axis) exceeds a 

predefined threshold (80% in our case) of the maximum possible reward, the range 

of permissible commands is expanded by 0.5 m/s, otherwise reduced by the same. 

Addition of Helper Functions: we incorporated additional helper functions and 

variables to meticulously collect and organize data during test runs. These 

functions are integral for post-run analysis, enabling us to extract valuable insights 

from every episode's performance metrics during the inference phase.  
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Chapter 4 

Results 

Our analysis is grounded on benchmarking results obtained from the 

implementation detailed in the paper "Learning to Walk in Minutes Using 

Massively Parallel Deep Reinforcement Learning[34]." The progression of our 

research through Phase 1 and Phase 2 training sessions is critically assessed, 

showcasing the adaptability and performance enhancements achieved with our 

methodologies. 

4.1 Benchmarking Against Prior Work 
Our initial benchmarking efforts focused on replicating the performance metrics as 

reported Rudin, Nikita, et al[34]. By leveraging the parameters and models detailed 

in the paper, we aimed to establish a solid foundation for our subsequent 

experiments.  

 

Figure 4.1: Comparison of average episodic total reward curves from Isaac Gym and Isaac 
Sim, demonstrating the consistency of the benchmark training model across different 
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simulation platforms.  

Hence, we replicated the model described in the aforementioned paper within 

Isaac Gym, providing a baseline for evaluating our subsequent modifications and 

training sessions within Isaac Sim. The reward curves obtained from both Isaac 

Gym and Isaac Sim exhibited a high degree of similarity, affirming the robustness 

of the training model across different simulation environments.  

        

Figure 4.2: Evaluation run with command speed of 1 m/s in both horizontal directions and 
no angular velocity on a (a) flat terrain simulation (b) terrain with randomized, discrete 
obstacles. 

The top row graphs in Fig. 4.3 and 4.4 show linear and angular velocity tracking. 

The solid lines (actual velocities) are close to the dashed lines (commanded 

velocities), indicating the controller is effectively tracking the desired speeds in 

both linear (x, y) and angular (z) velocities. The middle row shows non 

commanded velocity components which maintains balance and handles the 

intricacies of both flat and uneven terrains The bottom row graphs depict joint 

position tracking for the hip, thigh and knee joints of the left front leg. Again, the 

actual positions (solid lines) closely follow the target positions (dashed lines), with 

some expected oscillations due to dynamic interactions between the robot and the 

terrain. 

(a) (b) 
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Figure 4.3: Performance metrics for a quadruped robot test run on flat terrain, showing the linear and 
angular velocities as well as hip, thigh, and knee joint position tracking. 

Figure 4.4: Performance metrics for a quadruped robot test run on randomized, discrete 
obstacles, showing the linear and angular velocities as well as hip,thigh and knee joint 
position tracking.  
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4.2 Phase 1 Training: Quadruped Locomotion 
Without Particles 

Building upon the benchmarked model, we proceeded to Phase 1 of our training 

regimen, where the focus was on training the quadruped model in environments 

devoid of particle dynamics. This stage involved 2000 epochs of intensive training 

with an ensemble of 2048 robots. 

Inference mode: For inference, we employed a distinct setup from our training 

configuration. Specifically, we used a 6x6 size grid of particles on a single terrain, 

accounting for granular interaction forces. The inference was conducted on a single 

robot and episode length was set to 6 secs considering the size of the particle grid 

to capture accurate particle interactions. Learning is not active and domain 

parameters are set constant. Only an x-command velocity of 2 m/s was given for 

all the following inference runs. 

 

Figure 4.5: Inference environment showcasing a quadruped robot navigating a 6x6 particle 
grid navigating a dense particle field over a 6-second episode. 

Velocity Tracking: The mean values for linear velocity reward in the XY plane and 

angular velocity reward around the Z-axis are slightly higher in the Phase 1 Model, 

suggesting improved velocity tracking performance. Also, the linear velocity 

RMSD plot shows that after an initial peak, both models settle into a pattern, with 

Phase 1 consistently maintaining a lower RMSD compared to the benchmark 

model, where the equations for the RMSD can be defined as: 

RMSDlin_x = �1
𝑁𝑁
∑ �𝑣𝑣base_x,𝑖𝑖 − 𝑣𝑣cmd_x,𝑖𝑖�

2𝑁𝑁
𝑖𝑖=1 ;  RMSDang_z = �1

𝑁𝑁
∑ �ωbase_z,𝑖𝑖 − ωcmd_z,𝑖𝑖�

2𝑁𝑁
𝑖𝑖=1  
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Figure 4.6: Comparison of average episodic total reward curves in training from 
Benchmark and Phase 1. 

 

  

Figure 4.7: Comparison of (a) linear xy velocity and (b) angular z velocity tracking mean 
episodic rewards in training between a benchmark and Phase 1. 

 

Figure 4.8: Comparative analysis of root-mean-square deviation (RMSD) in (a) X linear and 
(b) Z angular velocities between a benchmark and Phase 1. 

This suggests better performance in tracking linear velocity commands in Phase 1. 

The angular velocity RMSD plot indicates a similar trend initially, but the 

Benchmark model exhibits a gradual increase in RMSD over time, suggesting a 

divergence from desired angular velocities as time progresses. 

(a) (b) 

(a) (b) 
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Energy Consumption and Efficiency:  

The most striking difference between the two models is observed in the power 

consumption and Cost of Transport (CoT). It is a measure often used to assess the 

energy efficiency of moving an entity from one point to another. It is defined as the 

power consumption divided by the product of mass (taken as 30 Kg), gravitational 

acceleration, and velocity. Phase 1 model demonstrated a significant reduction in 

average power consumption, with a mean of 179.13, compared to the benchmarked 

model's mean of 309.92. 

 

Figure 4.9: Graphs showing a comparison of (a) Cost of Transport and (b)Power 
Consumption between a benchmark and Phase 1. 

This reduction suggests a more energy-efficient locomotion strategy, further 

supported by the CoT metrics, where the Phase 1 model averaged 0.38 versus the 

benchmarked model's 2.00. This reduction suggests enhanced efficiency and energy 

utilization in the Phase 1 Model, likely attributable to the introduced adjustments 

in its reward structure. The Phase 1 model's adjustments have led to a more 

disciplined approach towards achieving efficient locomotion, reducing unnecessary 

movements (evident from lower average torques and joint accelerations). 

(b) (a) 
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Figure 4.10: Comparative contact force measurements for each leg of a quadruped robot 
during (a) benchmark test and (b) Phase 1. 

 

Contact Forces:  

Interestingly, the contact forces metrics show the Phase 1 model engaging in 

interactions with the ground that are on average stronger than those of the 

benchmarked model. Mean contact forces increased from 18.27 (Benchmarked) to 

30.87 (Phase 1) which could indicate a more assertive gait pattern encouraged by 

the new rewards, potentially contributing to the improved energy efficiency by 

reducing slippage and missteps. A broader range of interactions is observed in the 

Phase 1 model, suggesting a more dynamic engagement with the environment. 

Thus, the introduction of the contact force and stumble rewards in the Phase 1 

model, alongside the removal of the airtime reward, showcases a targeted 

approach to enhance stability and energy efficiency during locomotion. 

 

(b) 

(a) 
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4.3 Phase 2 Training: Incorporating Particles for 
Granular Terrain Simulation 

To accommodate the intricate dynamics of particle interactions and the reduced 

size of the training terrains, a few adjustments were made: 

• Episode Length Adjustment: Recognizing the reduced length and width 

of the terrains in Phase 2, we modified the episode length from 20 to 10 

seconds for maximum interaction with particles. 

• Reduction in Robot Count: Corresponding to the decrease in the number 

of terrains available for training, the total number of robots engaged in 

parallel training sessions was reduced from 2048 to 256. In alignment with 

this reduction, the mini-batch size for training was also decreased by 

1/8th. 

• Training Epochs: On top of the 2000 epochs completed in Phase 1, the 

model underwent an additional 1000 epochs of training in Phase 2. 

 

Figure 4.11: Average episodic total reward curve for Phase 2. Note that direct comparison 
with Phase 1 is not feasible due to the episode length being halved from 20 secs to 10 secs. 

 

Contact Forces: Phase 2 shows a slight decrease in the mean contact forces 

compared to Phase 1. This could be due to the particle-filled terrain's nature, where 

the interaction dynamics between the robot's feet and the ground are more complex 

and unpredictable. The varied contact forces suggest that Phase 2 adapts to 

maintaining stability and traction in a more challenging environment. 
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Power Consumption and Cost of Transport (CoT): While Phase 2 maintains 

similar levels of performance in velocity control and actuator efficiency, The power 

consumption and CoT are slightly higher with a mean of 199.89 in Phase 2 than in 

Phase 1, indicating a potential increase in energy expenditure, suggesting the 

inherent challenge in navigate the particle-filled terrain. 

 

Figure 4.12: Plots depicting the relationship between the (a)average final linear X velocity 
RMSD and commanded linear X velocity, and (b)average final angular Z RMSD versus 
commanded linear X velocity across benchmark, Phase 1, and Phase 2. The commanded 
linear X velocity was incrementally increased from 0 to 3 m/s in steps of 0.5, and the 
commanded yaw (angular Z) velocity varied from -0.6 to 0.6 rad/s in increments of 0.2. 

 

Figure 4.13: Graph illustrating (a)the mean squared error of base angular velocity in the XY 
plane (b) mean squared error in joint position for all joints for a quadruped robot across 
Phase 1 and Phase 2. 
  

(b) 

(a) 

(a) (b) 
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Fig. 4.12 plots depict the relationship between the command linear velocity in the 

x-direction and the average final root mean square deviation (RMSD) for both 

linear and angular velocities, comparing the benchmarked model with Phase 1 and 

Phase 2 models. 

The transition from rigid to particle-filled terrain in Phase 2 training does not show 

a significant improvement in the overall velocity tracking metrics compared to 

Phase 1. From Fig. 4.12(a), as the command linear velocity increases, the average 

final linear RMSD also increases for all models. This trend suggests that as robots 

are commanded to move faster, the deviation from the desired trajectory increases, 

which is expected due to the increased difficulty in maintaining precise control at 

higher speeds. A similar trend is observed for angular RMSD in Fig. 4.12(b), where 

an increase in command linear velocity correlates with an increase in angular 

RMSD. This indicates that faster linear movements are associated with greater 

challenges in maintaining angular stability. 

The Phase 1 model demonstrates a substantially flatter error curve compared to the 

benchmark, indicating that the RMSE remains relatively constant regardless of 

changes in commanded linear velocity. This stability in the RMSE suggests that the 

modifications in Phase 1, such as the removal of the airtime reward and the 

addition of contact force and stumble rewards, may have contributed to a more 

consistent and robust control over the robot's linear velocity. Phase 2 model 

maintains a similarly low and stable RMSE across all commanded velocities, 

closely mirroring the performance of Phase 1. 

However, a notable trend in Fig 4.13 is observed in the mean squared sum errors of 

the base angular velocity in the XY plane. In Phase 1, the mean squared sum error 

stands at 1.7539 with a high standard deviation of 4.7669, indicating a considerable 

variance in performance across different episodes. However, in Phase 2, not only 

does the mean squared sum error decrease to 1.6875, but the standard deviation 

also significantly reduces to 1.7753. Similarly, when analyzing the mean squared 

error for all joints (Degrees of Freedom or DOFs), a similar improvement is seen 

from Phase 1 to Phase 2. The mean squared error reduces from 1.3894 in Phase 1 to 
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1.3297 in Phase 2, accompanied by a decrease in standard deviation from 0.6691 to 

0.5849. The reduction in DOF Positions Squared Error from Phase 1 to Phase 2 

indicates an improvement in the robot's ability to accurately achieve target joint 

positions. The improvement seen in Angular Velocity XY Squared Errors signifies 

better control over the robot's orientation and turning movements. Efficient control 

over angular velocity is vital for maintaining balance, performing sharp turns, and 

correcting orientations in response to dynamic environmental changes. 

Even though the linear velocity RMSD did not show marked improvement, the 

enhancements in joint position accuracy and angular velocity control contribute to 

the overall locomotion stability and robustness of the robot. These improvements 

facilitate smoother transitions between movements, reduce the risk of falls or 

missteps, and improve the robot's ability to maintain a desired trajectory or 

orientation under varying conditions. In essence, the robot becomes more 

adaptable and reliable, qualities that are crucial for real-world applications. 

 

4.4 Discussion: 
The transition to Phase 2 does not yield significant velocity tracking improvements 

over Phase 1, where several factors could be at play. The balance between 

computational efficiency and learning effectiveness is critical. The reductions in 

robots, minibatch size, environment length, and the number of terrains, while 

beneficial for computational manageability, might have constrained the diversity 

and complexity of the learning scenarios encountered by the robot. Additionally, 

the shortened episode length could constrain the learning of long-term locomotion 

strategies. While Phase 2 aims to make the training process more computationally 

manageable, it is essential to ensure that these optimizations do not significantly 

hinder the model's ability to learn and adapt to complex locomotion challenges.  

As the model becomes more optimized in Phase 1, additional gains may become 

increasingly difficult to achieve, resulting in smaller improvements during 

subsequent training phases. With a more concise and potentially less diverse 
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training environment, there is a risk that the model may become overfit to the 

specific scenarios it was exposed to, potentially reducing its generalization to new 

terrains or conditions. 

Also, the inherent difficulty of adapting to highly variable and unpredictable 

terrains demands for more specialized training strategies, or the limitations of the 

current reward structure in capturing the nuances of terrain interaction. The 

adjustments in rewards between the phases were critical in directing the learning 

focus. However, the balancing of rewards, particularly with the introduction of 

new metrics like contact forces and stumble prevention, requires fine-tuning to 

ensure that each aspect contributes optimally to the overall learning goal. Future 

work could explore alternative training methodologies, reward structures, or 

model architectures to better equip the robot for efficient locomotion in complex 

terrains. 

  



65  

Chapter 6  

Conclusion 

This thesis has provided an extensive examination of the challenges and potentials 

in the domain of quadruped robot locomotion within simulated environments, 

with a focus on particle-based dynamics. A comprehensive approach was adopted, 

starting with the motivation and fundamental objectives, leading up to a detailed 

exploration of methodologies involving RL and dynamic terrain generation within 

simulation platforms like Isaac Sim and Warp. 

Through rigorous training phases and methodological curriculum design, the 

ability of quadruped robots to navigate complex terrains has been enhanced. 

Benchmarking against existing work, we've delineated clear improvements and 

acknowledged the inherent challenges.  

 

6.1 Future Work 
The research paves the way for a number of exciting avenues for future 

investigation. 

Domain Adaptation: Implementing privileged learning through student-teacher 

policies could bridge the gap between simulation and real-world application more 

efficiently. 

Multi-Modal Locomotion Strategies: Diversifying the gaits and movement 

strategies, such as walking, trotting, and galloping, can equip robots with a 

versatile toolkit for navigating diverse environments. 

Reward Function Exploration: Exploring additional reward terms and fine-tuning 

existing ones could further enhance the training process, potentially leading to 
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more natural and efficient locomotion. 

Training with Particles from the Start: Initiating training in particle-based 

environments may lead to more grounded behaviors that account for complex 

interactions from the outset. 

Efficient Algorithms: Investigating other algorithms like Soft Actor-Critic (SAC) 

could improve sample efficiency, particularly when the number of robots or 

computational resources is limited. 

Real-World Transfer: Transferring our simulation-trained models to physical 

hardware will be a critical step in assessing the viability of our methods in real-

world scenarios. 

Hardware Iteration: The feedback loop between simulation findings and hardware 

design can lead to more resilient and capable robots, capable of handling the 

unpredictability of real-world interactions. 

The overarching goal will remain to build robots that can assist in a variety of tasks, 

ranging from search and rescue operations to planetary exploration. The 

adaptability and resilience of such machines are crucial, and the work presented 

here lays a foundational framework that future research can build upon to realize 

these ambitious goals.  
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